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Abstract
Solutions of Bethe equations are found for different numbers of nodes in the
Heisenberg chain for S = 1/2 and for chosen winding numbers. The computing
procedure starts from asymptotic solutions. It is shown that the evolution of
solutions has quasi-continuous form even for a wide range of nodes number N.
However, it is observed that in some cases critical and limiting points appear.

PACS numbers: 75.10.−b, 05.50.+q

1. Introduction

The Bethe ansatz in asymptotic form for the Heisenberg ring in a thermodynamical formulation
results in a problem that is easy to solve and widely discussed in the literature [1–6]. Modern
technologies (e.g., nanotechnology, nanolithography, spintronics, low-dimensional devices,
etc.) require, however, exact solutions for finite cases and even for very small values of N.
Usually, to solve the problem for fixed N, admissible sets of winding numbers have to be
chosen [1]. In general, for a given chain of length N, the set of solutions cannot immediately
be found from that of another length. Nevertheless, it has been observed that for chains of
lengths that are close to one another and the same set of winding numbers {λ1, λ2, λ3} the
solutions are similar. But this regularity is not valid for every length N. For this reason we
study here the evolution of solutions for given {λ1, λ2, λ3}, starting from N = 1000, a number
for which we take the asymptotic solution to be a good approximation, and ending at a value of
N that is as small as possible (even as small as N = 6). We have chosen those sets of winding
numbers that are present for very small values of N, i.e. the winding numbers for the case
N = 6, r = 3, the one well examined in other papers [7, 9]. For all the sets of winding numbers,
we have found solutions of the Bethe equations, for many values of N varying from 6 to
1000.

In section 2 we describe different types of solutions for the Heisenberg chain with N sites
and r spin deviations, depending on the choice of winding numbers. Furthermore, the special
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values of N for which the character of the solutions changes are introduced. These special
values are the critical, limiting and transition points.

Section 3 contains solutions for r = 3 and for a wide range of values of N (from the
asymptotic case up to small integers). In this section the procedure of computations and the
form of Bethe equations in dependence on sets {λl} have been introduced. Our method relies
on fixing the sequence of winding numbers, and thus also the total number r of reversed spins
is fixed. Clearly, it yields the change of quasimomentum of appropriate Bethe eigenstates
for different values of N. Thus our treatment of the limit N → ∞ implies k → 0, i.e.
quasimomentum tends towards the centre of the Brillouin zone, which differs from the standard
regime (r/N fixed for N → ∞). But our approach allows us to obtain effectively proper excited
states for a given finite N.

Section 4 contains the results for N = 6, r = 3 and a discussion of these results and general
conclusions are collected in the final section.

2. Bethe equations and types of solutions

2.1. Physics of the Heisenberg chain

The Heisenberg chain contains identical particles with spin 1
2 , with nearest-neighbour

interaction. The Hamiltonian [1, 2] of this system has the form

Ĥ =
N∑

n=1

(4SnSn+1 − 1) (1)

where Sn refers to the spin vector at position n along the chain. Furthermore, the identification

SN+1 ≡ S1 (2)

ensures periodic boundary conditions.
A stationary state of this system is given by the Bethe solution [1]:

∑
1�n1<n2<···<nr�N

∑
P

ei(
∑r

l=1 kP(l)nl+
1
2

∑
j<l ϕP(j)P (l))|n1n2 . . . nr 〉 (3)

where P is a permutation of the positions of the r inversions or pseudoparticles, and the sum
runs over all such permutations to assure that the pseudoparticles are indistinguishable. The
symbol |n1n2 . . . nr 〉 denotes the magnetic configuration corresponding to r inversions on the
sites n1, n2, . . . , nr of the lattice.

In the general case with r deviations, one can consider them as pseudoparticles that move
freely along the chain, with the exception of a scattering or collision. A scattering only takes
place if two pseudoparticles occupy neighbouring positions on the chain and thus it is a two-
body short-range interaction. The two pseudoparticles l and j move with their pseudomomenta
kl and kj until they reach neighbouring positions. Here scattering or exchange of momenta
takes place, and is accompanied by a phase change ϕl,j. Pseudomomenta kl and kj are related
to phases ϕl,j by the reflection condition:

2cot
ϕl,j

2
= cot

kl

2
− cot

kj

2
ϕl,j = −ϕj,l . (4)

Pseudomomenta and related phases should also satisfy the boundary conditions

Nkl = 2πλl +
∑
j �=i

ϕl,j l = 1, 2, . . . , r (5)
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where N is the length of the chain and λl are winding numbers, which satisfy the condition

−N

2
� λ1 � λ2 � · · · � N

2
. (6)

Equations (4) and (5) are Bethe–Hulthén (BH) equations.
The energy of the eigenstate (3) is given by

E = −4
r∑

l=1

(1 − cos kl). (7)

2.2. Types of solutions

The key role in the classification of the Bethe–Hulthén solutions is played by winding numbers
{λl}. According to the relations between these numbers, one may distinguish between different
types of solutions. It implies different forms of BH equations. Clearly, the general form of
the system of Bethe equations is unique. The form of solutions, however, varies for different
sequences of winding numbers. Anticipating such solutions, we adapt the particular form of
the system of Bethe equations. In the special case (N = 6, r = 3) which we discuss in detail
in this paper, there are three winding numbers, which are related by the following formula:

−3 � λ1 � λ2 � λ3 � 3. (8)

There are four main types of sets of winding numbers that give different kinds of solutions
[9]:

(I) Consecutive λl differ at least by 2. In this case all parameters kl and ϕl,j are real.
(IIa) Two consecutive winding numbers are equal. For this set of {λl} only one

pseudomomentum is real, while the other two are complex conjugated. For this case
there exists a limiting point (Nlim) as will be explained in the next section.

(IIb) Two consecutive winding numbers differ by 1. For such a set of {λl} critical (Ncr) and
limiting points (Nlim) exist [7, 11] (see next section).

(III) All winding numbers are equal. We assume that one pseudomomentum is real and the
other two are complex conjugated.

2.3. Critical and limiting points

Critical and limiting points (Ncr and Nlim, respectively) appear in type (IIb) solutions. In
that case, starting from asymptotic solutions the parameters are real, up to the point where N
reaches its critical value Ncr. At this point a pair of real wavenumbers (kl, kj ) changes into a
complex conjugated pair and the corresponding phase ϕl,j will also assume a complex value.

Such a complex solution exists below Ncr until N reaches another characteristic value:
Nlim. Then the imaginary part of the two wavenumbers will diverge and the corresponding N
is the lowest value for which this solution should be taken into consideration. Below this limit
it coincides with a solution for another parameter set.

For solutions of type (IIa) only limiting points occur, because the parameters are complex
in the full range of N values. We do not observe a critical point in this case.

3. Solutions for r = 3

3.1. Procedure of computations

The procedure for the solution of the Bethe equations (4) and (5), for given winding number,
starts from an asymptotic solution for large N, typically N = 1000. As a rule the character
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of the solution does not change drastically in lowering N and the values of the parameters
show a quasi-continuous behaviour, apart from the case that N reaches one of those special
points discussed in subsection 2.3. The critical point as a rule corresponds to a non-integer N,
which separates two regions of quantitatively different behaviour of the solution. Further we
introduce each solution based on relations between succeeding winding numbers {λl}.

3.2. The set of winding numbers: λ1 � λ2 − 2, λ2 � λ3 − 2

In this case the consecutive winding numbers differ by at least 2. All solutions obtained are
real, i.e. all pseudomomenta and phases are real numbers. In accordance with the procedure
described in subsection 3.1, the first step in the calculations is the determination of the results
for N = 1000, considered to be described by the asymptotic case in a fairly good approximation.
For the set of sufficiently small winding numbers, the solutions are characterized by parameters

kl ∼ 2πλl

N
ϕl,j ∼ − 4πλj

(λl − λj )N
l �= j l, j = 1, 2, 3. (9)

Solutions for smaller N are obtained from Bethe–Hulthén equations:

Nk1 = 2πλ1 + ϕ1,2 + ϕ1,3 (10a)

Nk2 = 2πλ2 − ϕ1,2 + ϕ2,3 (10b)

Nk3 = 2πλ3 − ϕ1,3 − ϕ2,3 (10c)

sin(ϕ1,2)[cos(k1 − k2) − 1] + [cos(ϕ1,2) + 1][sin(k1) − sin(k2) − sin(k1 − k2)] = 0 (10d)

sin(ϕ1,3)[cos(k1 − k3) − 1] + [cos(ϕ1,3) + 1][sin(k1) − sin(k3) − sin(k1 − k3)] = 0 (10e)

sin(ϕ2,3)[cos(k2 − k3) − 1] + [cos(ϕ2,3) + 1][sin(k2) − sin(k3) − sin(k2 − k3)] = 0. (10f )

Results for successive N < 1000 show the expected quasicontinuous behaviour. Here we only
give the results for N = 6, r = 3, which are presented in table 1. In this table, the symbol I
denotes the case in which all three pseudomomenta are non-vanishing, whereas I(1), I(2) and
I(3), respectively, correspond to the cases in which one, two and three pseudomomenta are
equal to zero.

A typical example is shown in figure 1, i.e. the case {λ1, λ2, λ3} = {−3,−1, 1}. In
this figure the evolution of the solutions within the range 6 � N � 1000 is shown. In the
asymptotic regime the changes of parameters {k1, k2, k3, ϕ1,2, ϕ1,3, ϕ2,3} as functions of N are
quasicontinuous. In a few cases some parameters exist only for N > Nt (Nt being a transition
point), e.g. Nt = 8 for {−3, 1, 3} (see figure 2). Below this point, one of the parameters
(pseudomomentum or phase) leaves the (−π , π) range.

3.3. The set of winding numbers: λ1 � λ2 − 2, λ2 = λ3 − 1

In this case there exists a pair λn, λn+1 of consecutive nonzero λ, which differ by 1, i.e.
λn+1 = λn + 1. It implies a change of the form of Bethe–Hulthén equations. Let us introduce
the notation

kn = An − bn kn+1 = An + bn ϕl,n = Pl,n − ql,n

ϕl,n+1 = Pl,n + ql,n ϕn,n+1 = π − qn

(11)

and

Pl,n = −Pn,l and ql,n = −qn,l. (12)

For the case N = 6 and r = 3 we have n = 1 or n = 2 and consequently l = 3 or l = 1,
respectively.
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Table 1. Results for N = 6, r = 3.

Type of
solution No {λl} k1 k2 k3 ϕ1,2 ϕ1,3 ϕ2,3 k E

I 1 (−3, −1, 1) π −1.72 1.72 2.33 −2.33 −1.72 3 −2.80
(−1, 1, 3) −1.72 1.72 π −1.72 −2.33 2.33 3 −2.80

I(1) 2 (−3, −1, 0) −2.77 −1.42 0 2.23 0 0 2 −1.28
3 (−2, 0, 1) −2.39 0 1.34 0 −1.76 0 −1 −1.00
4 (−2, 0, 2) −2.51 0 2.51 0 −2.51 0 0 −2.19
5 (−1, 0, 0) −1.05 0 0 0 0 0 −1 1.00
6 (−1, 0, 1) −1.26 0 1.26 0 −1.26 0 0 0.19
7 (−1, 0, 2) −1.34 0 2.39 0 −1.76 0 1 −1.00
8 (0, 0, 1) 0 0 1.05 0 0 0 1 1.00
9 (0, 1, 3) 0 1.42 2.77 0 0 2.23 −2 −1.28

I(2) 10 (−3, 0, 0) −π 0 0 0 0 0 3 −0.50
(0, 0, 3) 0 0 π 0 0 0 3 −0.50

11 (−2, 0, 0) −2.09 0 0 0 0 0 −2 0
12 (0, 0, 2) 0 0 2.09 0 0 0 2 0

I(3) 13 (0, 0, 0) 0 0 0 0 0 0 0 1.50
II(a) 14 (−2, 1, 1) −π 1.57 − i∞ 1.57 + i∞ −π + 1.10i −π − 1.10i −i∞ 0 −1.50 (1)

(−1, −1, 2) −1.57 − i∞ −1.57 + i∞ π −i∞ −π − 1.10i −π + 1.10i 0 −1.50 (1)

15 (−1, −1, 0) −1.05 − 0.73i −1.05 + 0.73i 0 −4.40i 0 0 −2 0.78
16 (−1, −1, 1) −1.51 − 2.80i −1.51 + 2.80i 1.90 −14.76i −2.17 − 0.87i −2.17 + 0.87i −1 −050
17 (−1, 1, 1) −1.90 1.51 − 2.80i 1.51 + 2.80i −2.17 + 0.87i −2.17 − 0.87i −14.76i 1 −0.50
18 (0, 1, 1) 0 1.05 − 0.73i 1.05 + 0.73i 0 0 −4.40i 2 0.78

II(b) 19 (−2, −1, 0) −1.57 + i∞ −1.57 − i∞ 0 π + i∞ 0 0 3 0.50 (2)

(0, 1, 2) 0 1.57 + i∞ 1.57 − i∞ 0 0 π + i∞ 3 0.50 (2)

III 20 (−1, −1, −1) −π −1.09i 1.09i 5.44i −5.44i −1.09i 3 0.80∗

(1, 1, 1) −1.09i 1.09i π −1.09i −5.44i 5.44i 3 0.80∗

Quasimomentum k is given in units 2π/N, E is given in units J and rescaled. The solutions marked by (1) and (2) contain values of bn and qn obtained using
limit N → Nlim considerations. (∗) denotes results obtained for changed set of winding numbers (see subsection 3.5).
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Figure 1. Evolution of solutions for set (−3, −1, 1) as the representative of the I type: (a) kl,
(b) ϕl,j.
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Figure 2. Evolution of solutions for set (−3, 1, 3): (a) evolution of kl, (b) evolution of ϕl,j.
Transition point Nt = 8.

Then Bethe–Hulthén equations (4) and (5) take on the form

Nkl = 2πλl +
∑
j �=l

ϕl,j (13a)

NAn = π(2λn + 1) +
∑

l( �=n,n+1)

Pn,l (13b)

Nbn = qn +
∑

l( �=n,n+1)

qn,l (13c)

cos
(qn

2

)
sin(bn) + sin

(qn

2

)
[cos(An) − cos(bn)] = 0 (13d)

sin(−Pl,n)[cos(An − kl) − cos(bn)] + [cos(−Pl,n) + cos(−ql,n)]

× [sin(An) − sin(kl) cos(bn) − sin(An − kl)] = 0 (13e)
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Figure 3. Evolution of solutions for set (0, 1, 2) as the representative of the II(b) type: (a) kl,
(b) ϕl,j. Critical point Ncr = 21.86.

sin(−ql,n)[cos(An − kl) − cos(bn)] + [cos(−Pl,n) + cos(−ql,n)]

× [−cos(kl) sin(bn) + sin(bn)] = 0 (13f )

where l �= n, n + 1.
We observe the existence of a critical point Ncr; the solutions are real for N > Ncr and

complex for N < Ncr. For the complex regime we put

kn = An − ibn kn+1 = An + ibn ϕl,n = Pl,n − iql,n

ϕl,n+1 = Pl,n + iql,n ϕn,n+1 = π − iqn.
(14)

Then equations (13d )–(13f ) take on the form

cosh
(qn

2

)
sinh(bn) + sinh

(qn

2

)
[cos(An) − cosh(bn)] = 0 (13g)

sin(−Pl,n)[cos(An − kl) − cosh(bn)] + [cos(−Pl,n) + cosh(−ql,n)]

× [sin(An) − sin(kl) cosh(bn) − sin(An − kl)] = 0 (13h)

sinh(−ql,n)[cos(An − kl) − cosh(bn)] + [cos(−Pl,n) + cosh(−ql,n)]

× [−cos(kl) sinh(bn) + sinh(bn)] = 0. (13i)

Another characteristic feature for that case is the appearance of a limiting point Nlim, i.e.
the smallest value of N for which a solution can be found. In a close neighbourhood of Nlim

we can observe a drastic change of value for bn and qn and for N → Nlim there exists the limit
bn → ∞ and qn → ∞. Furthermore, from (13g) we can observe that An → ±π/2 in the
limiting case. For N = 6, r = 3 only one set of {λl} of the type described in this subsection
gives a solution (see table 1 and figure 3). The values of bn and qn written in table 1 come
from theoretical considerations of the limit N → Nlim, because the numerical procedure fails
for this point.

3.4. The set of winding numbers: λ1 < λ2, λ2 = λ3

In this set of {λl}, two neighbouring winding numbers are equal. Following the solutions
starting from large N, it can be observed that the two wavenumbers connected with the
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Figure 4. Evolution of solutions for set (−1, 1, 1) as the representative of the II(a) type: (a) kl, (b)
ϕl,j.

degenerate winding numbers (λn = λn+1) are complex conjugated. Denoting the third one by
the index l we make the following substitutions:

kn = An − ibn kn+1 = An + ibn ϕl,n = Pl,n − iql,n

ϕl,n+1 = Pl,n + iql,n ϕn,n+1 = −iqn.
(15)

Formulae (14) are in fact the same as (15) except for the last equation,where there is a difference
(of π) in ϕn,n+1, which denotes the phase between two particles with degenerate winding
numbers. Thus some equations for the pseudomomenta and phases should be modified: (13b)
and (13g) should respectively be replaced by

NAn = 2πλn +
∑

l( �=n,n+1)

Pn,l (16a)

and

sinh
(qn

2

)
sinh(bn) + cosh

(qn

2

)
[cos(An) − cosh(bn)] = 0. (16b)

In this case there are no critical points, therefore for every N, the solution takes the form (15)
with a real kl.

All solutions for this set of {λl} for N = 6 are contained in table 1. The dependence on N
of this type of solution is also shown in figure 4, for a typical example.

Starting from the asymptotic solutions for large N one may arrive at the solutions for
smaller values of N by the process of continuations, given in subsection 3.2. Now the
formulae are more complicated than those used in previous examples. For nondegenerate λl

we have

kl ∼ 2πλl

N
(17a)

and for degenerate λn

An ∼ 2πλn

N
bn ∼ 2πλn

N3/2
qn ∼ 2πλn

N1/2
(17b)

while for mixed cases

Pn,l ∼ −4πλnλl

N
qn,l ∼ 4πλnλ

2
l

(λn − λl)2N3/2
(17c)

where Pn,l = −Pl,n and qn,l = −ql,n. The mode l is supposed to be nondegenerate.
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3.5. Set of winding numbers: λ1 = λ2 = λ3

This case is the most complicated one. First we assume that one quasimomentum is real and
the others form a complex conjugated pair. We use the same indices as in the example of
subsection 3.4, i.e., kl is a real parameter. The other parameters now have the form

kn = An − ibn kn+1 = An + ibn ϕl,n = Pl,n − ipl,n

ϕl,n+1 = Pl,n + ipl,n ϕn,n+1 = −irn.
(18)

Comparing formulae (15) and (18) one observes a difference in notation (pl,n and rn instead
of ql,n and qn, respectively). These changes are introduced because of the form of asymptotic
expressions for the given set of winding numbers in this case:

kl ∼ 2πλ

N
+

κ

N2
An ∼ 2πλ

N
+

α

N2
bn ∼ b0

N2

Pl,n ∼ P0

N
pn ∼ p0

N
1/2

rl,n ∼ r0

N
1/2

.

(19)

To find quantities κ , α, b0, P0, p0, r0 it is necessary to solve the following equations:

b0 = −p0 + r0 (20a)

κ + 2α = 0 (20b)

− 1
2P0b

2
0 + 12π2λ2α + 2πλb2

0 = 0 (20c)

p0b
2
0 = −8π2λ2 (20d)

r0b0 = 4π2λ2 (20e)

α = −P0. (20f )

After solving these equations it turns out that b0 has two equivalent solutions that differ in
sign: ±b0, involving a doubling of the solutions for p0 and r0 (±p0 and ±r0). To remove this
ambiguity, we choose +b0 and use it to get unique values of p0 and r0.

To find the solutions starting from large N, the following equations have to be solved:

Nkl = 2πλ + 2Pl,n (21a)

NAn = 2πλ − Pl,n (21b)

Nbn = rn − pl,n (21c)

sinh
( rn

2

)
sinh(b) + cosh

( rn

2

)
[cos(An) − cosh(bn)] = 0 (21d)

sin(−Pl,n)[cos(An − kl) − cosh(bn)] + [cos(−Pl,n) + cosh(−pl,n)]

× [sin(An) − sin(kl) cosh(bn) − sin(An − kl)] = 0 (21e)

sinh(−pl,n)[cos(An − kl) − cosh(bn) + [cos(−Pl,n) + cosh(−pl,n)]

× [−cos(kl) sinh(bn) + sinh(bn)] = 0. (21f )

Considering the case N = 6, r = 3 we notice that such a solution exists only for the set of
winding numbers (−1, −1, −1) (equivalent to (1, 1, 1)). Inspecting the changes in parameters
describing solutions, starting from asymptotic case, we find that equations (21) can be solved
only for N � 8. This value of N turned out to be the last number in the series of N for which
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Figure 5. Evolution of solutions for set (−1, −1, −1) as the representative of the III type: (a) kl,
(b) ϕl,j. Solutions for N = 7 and N = 6 are obtained for a new type of {λ} (see subsection 3.5).

solutions could be obtained in the interval (−π , π). For smaller N one of the parameters
exceeds this range, but we found a way to construct solutions that obey this condition. It can
be shown that a change of the set of winding numbers is possible. Having a set {λ1, λ2, λ3)

we can obtain another one by the following transformation [11]:

λ′
1 = λ1 ∓ 2 λ′

2 = λ2 ± 1 λ′
3 = λ3 ± 1. (22)

Due to this method, a parameter that was outside the prescribed range is now brought back
from the opposite side of the range (see figure 5(b)).

In the case being discussed, we make the transformation (−1,−1,−1) ⇒ (−3, 0, 0)

(equivalently (1, 1, 1) ⇒ (0, 0, 3)). Now equations (21) cannot be applied to this case, as the
case (−3, 0, 0) (equivalent to (0, 0, 3)) belongs to the I(2) type. Therefore to find solutions for
N = 6 or N = 7 we have to use equations (10) and remember that we look for parameters
different from zero, as that took place for results of I(2) type.

We can immediately observe that the set {λ1 = 0, λ2 = 0, λ3 = 0} results in the solutions
{k1 = 0, k2 = 0, k3 = 0, ϕ1,2 = 0, ϕ1,3 = 0, ϕ2,3 = 0}, so all parameters satisfy all relevant
conditions.

4. Results and discussion

In this paper the evolution of solutions for a Heisenberg ring with r = 3 spin deviations is
analysed. The starting point of the computations was the asymptotic case (N → ∞). Then
the number of sites was decreased to a very small number: N = 6.

Table 1 contains exact results for the case N = 6, r = 3. But in cases (1) and (2) using
numerical computations we were not able to find solutions for N = 6 and the limit values for
bn and qn were put instead. Furthermore ‘∗’ means that results were obtained for another set
of winding numbers (see subsection 3.5).

Looking at table 1 one can observe equivalent cases, i.e., for the symmetric set of winding
numbers ({λ1, λ2, λ3} and {−λ3,−λ2,−λ1}), related sets of the parameters {kl} and {ϕl,j }
are obtained, the difference being only in the sign of an individual parameter. The total
pseudomomentum—quasimomentum plays the key role here. In table 1 the results are
given in units 2π/N. If these are different for symmetric cases then the solutions have to
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Table 2. Equivalent cases for N = 6, r = 3.

Type of solution Equivalent cases from table 1

I —
2 and 9

I(1) 3 and 7
5 and 8

I(2) 11 and 12
I(3) —

II(a)
15 and 18
16 and 17

II(b) —
III —

be considered to be essentially different ones. Otherwise solutions obtained for equivalent
sets of winding numbers with equal quasimomentum should be considered as identical.

Equivalent solutions for N = 6, r = 3 are contained in table 2.

5. Conclusions

In this paper we have proposed a method for the calculation of BH solutions. It
is based on the determination of solutions for a gradual decrease of N starting from
the quasiasymptotic case (N large, e.g., N = 1000). For this case, quantum numbers
describing the solutions (pseudomomenta and phases) are small (almost equal to zero).
This follows from the asymptotic formulae for these numbers, in which N appears in the
denominator. With the decrease of the number of sites N the values of these quantum
numbers become gradually larger and even in some cases of small N exceed the first
Brilluoin zone. For the asymptotic case we have a large number of solutions, determined
by the different sets of {λl). Therefore we restricted our considerations to those sets which
are expected to give solutions for N = 6, the final number of sites we are interested in.
The number of solutions also depends on the number of spin deviations r. We have
chosen r = 3, as a nontrivial case also for N = 6. All these solutions are collected
in table 1.

Solving the BH equations by direct numerical methods results in a great number of
solutions from which some should be removed as a consequence of equivalency or non-
physical nature. Our method is promising, because we eliminate additional solutions through
accurate determination of the range in which solutions should be obtained.

It is very surprising that for many cases the wavenumbers and phases of the solutions are
quasi-continuous functions of the chain length N even in the range for small N (e.g. (−3, −1, 3),
figure 1). However, there are cases for which continuity is broken by critical, limiting and
transition points (e.g. figure 3). In the case N = 6, r = 3 there are several equivalent solutions
reflecting BH equation symmetry, which can be observed after close inspection of formulae
(4) and (5).

Our investigations clearly demonstrate that evolution of solutions is quasi-continuous,
with the exception of special cases, such as critical, limiting and transition points. These kinds
of nonanalyticity are associated with our choice of tracking the solutions by specification of
winding numbers.
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